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Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime
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In a previous paper@I. Bena, M. Malek Mansour, and F. Baras, Phys. Rev. E59, 5503~1999!# the statistical
properties of linearized Kolmogorov flow were studied, using the formalism of fluctuating hydrodynamics. In
this paper the nonlinear regime is considered, with emphasis on the statistical properties of the flow near the
first instability. The normal form amplitude equation is derived for the case of an incompressible fluid and the
velocity field is constructed explicitly above~but close to! the instability. The relative simplicity of this flow
allows one to analyze the compressible case as well. Using a perturbative technique, it is shown that close to
the instability threshold the stochastic dynamics of the system is governed by two coupled nonlinear Langevin
equations in Fourier space. The solution of these equations can be cast into the exponential of a Landau-
Ginzburg functional, which proves to be identical to the one obtained for the case of an incompressible fluid.
The theoretical predictions are confirmed by numerical simulations of the nonlinear fluctuating hydrodynamic
equations.

PACS number~s!: 47.20.2k, 05.40.2a, 05.90.1m
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I. INTRODUCTION

A central issue in nonequilibrium statistical physics is t
role of fluctuations in the onset of hydrodynamic instab
ties. From a theoretical point of view one generally relies
the Landau-Lifshitz fluctuating hydrodynamics@2#, mainly
because of its relative simplicity as compared to more f
damental approaches@3,4#. Fluctuating hydrodynamics ha
been used by various authors to study the statistical pro
ties of simple fluids subjected to nonequilibrium constrain
such as temperature gradient@3,5,6# or shear@4,7# ~for a
review, see Ref.@8#!. Light scattering results, obtained fo
systems under a temperature gradient, have shown qua
tive agreement with theoretical predictions@9#. Quantitative
agreement has also been demonstrated with results bas
particle simulations, both for systems under temperature
dient @10,11# and shear@12#.

Ordinarily the macroscopic study of subsonic hydrod
namic instabilities is based on the incompressibility assum
tion. However, as first pointed out by Zaitsev and Shliom
@13#, this assumption is essentially inconsistent with the v
foundations of the fluctuating hydrodynamics formalis
since it imposes fictitious correlations between the veloc
components of the fluid. On the other hand, the compre
ibility of the fluid affects mostly fast sound modes, where
the dynamics of the system near an instability is governed
slow dissipative modes. We may thus expect that the beh
ior of a fluid evolving near a subsonic instability threshold
not affected in practice by its compressibility. This intuitiv
argument has been used by many authors who have co
ered fluctuating incompressible hydrodynamic equations
even directly the corresponding normal form amplitu
equations to which they added random noise terms@14#. In
these approaches, the characteristics of the noise terms
not be related to equilibrium statistical properties of the flu
and thus remain arbitrary. A more satisfactory approa
would be to start with the full compressible fluctuating h
PRE 621063-651X/2000/62~5!/6560~11!/$15.00
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drodynamic equations. Reducing these equations to a
normal form amplitude equation near the instability wou
lead directly to the explicit form of the associated noi
terms consistent with such requirements as the fluctuat
dissipation theorem. Such a procedure, however, prove
be quite difficult, mainly because of the boundary conditio
To our knowledge, the only attempt in this direction w
made by Schmitz and Cohen for the case of the Be´nard in-
stability @15#. Concentrating on the behavior of a small lay
in the bulk, these authors succeeded in deriving the line
ized fluctuating equations close to the convective instabil
Whether this technique can be generalized to derive the
responding normal form amplitude equation for the case
the Bénard instability is not clear at the present time.

Recently, we have considered the problem of hydro
namic fluctuations in the case of a simple flow propos
some 50 years ago by Kolmogorov@16#. Thanks to the peri-
odic boundary conditions associated with this model, a
tailed analysis of the linearized fluctuating hydrodynam
equations, from near equilibrium up to the vicinity of the fir
instability, could be carried out@1#. In particular, we have
been able to show that in the long time limit the flow b
haves as if the fluid were incompressible, regardless of
value of the Reynolds number. The situation was differ
for the short time behavior. We established that the inco
pressibility assumption leads here to a wrong form of
static correlation functions, in agreement with the predict
of Zaitsev and Shliomis@13#, except near the instability
threshold, where our results strongly suggest that the inc
pressibility assumption becomes valid again. On the ot
hand, the linearized fluctuating hydrodynamic equations
clearly not valid close to or beyond the instability thresho
Although extensive numerical simulations have confirm
our predictions, a satisfactory answer to this important pr
lem requires a full nonlinear analysis of the fluctuating Ko
mogorov flow. The present article is devoted to this proble

In the next section, the Kolmogorov flow is briefly re
viewed. A nonlinear analysis is carried out for an incom
6560 ©2000 The American Physical Society
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pressible fluid and the explicit form of the stream functi
and the associated velocity field is derived above but clos
the instability. Section III is devoted to the analysis of
compressible fluid. After setting up a perturbation schem
we show that the solution of the problem is essentially
same as the one derived in Sec. II for the incompress
fluid, at least close to the instability threshold. We then c
centrate on the statistical properties of the flow and sh
that, close to the instability threshold, the dynamics of
system is governed by a set of two nonlinear coupled Lan
vin equations. Here again, the equivalence with the inco
pressible case is established. Concluding remarks and
spectives are summarized in Sec. IV.

II. INCOMPRESSIBLE KOLMOGOROV FLOW

Consider an isothermal flow in a rectangular boxLx3Ly
oriented along the main axes, that is,$0<x<Lx ,0<y<Ly%.
Periodic boundary conditions are assumed in both direct
and the flow is maintained through an external force field
the form

Fext5F0 sin~2 p n y/Ly! 1x , ~1!

where 1x is the unit vector in thex direction. This model
represents the so-calledKolmogorov flowand it belongs to
the wider class of two-dimensional negative eddy viscos
flows @17#. It is entirely characterized through the strength
the force fieldF0, the parametern, which controls the wave
number of the forcing, and the aspect ratioar , defined as

ar5Lx /Ly . ~2!

In the following, we will mainly concentrate on the casen
51.

The fluctuating hydrodynamic equations for this mod
read:

] r

] t
52“ • ~r v!, ~3!

r
] v

] t
52r ~v•“ ! v2“ p2“•s1Fext , ~4!

wherer is the mass density,p the hydrostatic pressure ands
the two dimensionalfluctuating stress tensor,

s i , j52h S ] v i

] xj
1

] v j

] xi
2d i , j “•vD2z d i , j “•v1Si , j .

~5!

S is a random tensor whose elements$Si , j% are Gaussian
white noises with zero mean and covariances given by

^Si , j~r ,t ! Sk,l~r 8,t8!&52kBT0 d~ t2t8! d~r2r 8!@h~d i ,k
Krd j ,l

Kr

1d i ,l
Krd j ,k

Kr !1~z2h!d i , j
Krdk,l

Kr #. ~6!

For simplicity, we shall assume that the shear and bulk
cosity coefficientsh and z are state independent, i.e., they
are constant.

Let us first concentrate on thedeterministicbehavior. It
can easily be checked that in the stationary state the pres
to
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and density are uniform in space (pst5p0 , rst5r0),
whereas the velocity profile is given by

vst5u0 sin~2 p y/Ly! 1x ,

u05
F0 Ly

2

4 p2 h
. ~7!

For small enoughF0, this stationary flow is stable. As w
increaseF0, however, the flow eventually becomes unstab
giving rise to rotating convective patterns. Other instabilit
of increasing complexity may occur for larger values ofF0,
culminating in a chaoticlike behavior similar to what is o
served in turbulent flows@18–20#. In this paper we shall
limit ourselves to the analysis of the system near its fi
instability.

We still have to supply the momentum conservation eq
tion ~4! with an equation of state relating the pressure to
density~recall that the system is isothermal!. In this section,
we shall simply assume that the flow is incompressible, i

“ • v5
]u

]x
1

]v
]y

50, ~8!

whereu andv represent thex andy components of the ve
locity, respectively, i.e.,v[u1x1v1y . Relation~8! implies a
uniform densityr0 throughout the system for all time, i
initially so, as well as the existence of a scalar functi
c(x,y), known as thestream function, defined by the rela-
tions

u5
]c

]y
, v52

]c

]x
. ~9!

Scaling lengths byLy , velocity by u0, and time byLy /u0,
the dimensionless equation for the stream function reads

]~¹2 c!

]t
52

]c

]y

]~¹2 c!

]x
1

]c

]x

]~¹2 c!

]y
1R21 ¹2 ~¹2 c!

18 p3 R21 cos~2 p y!, ~10!

whereR is the Reynolds number,

R5
r0 u0 Ly

h
. ~11!

The stationary solution of Eq.~10! is

cst52
1

2 p
cos~2 p y!. ~12!

Setting c5cst1dc and linearizing Eq.~10! around cst ,
one gets

]~¹2 dc!

]t
52sin~2 p y!

]~¹2 dc!

]x
24 p2 sin~2 p y!

] dc

]x

1R21 ¹2 ~¹2 dc!. ~13!

Owing to periodic boundary conditions,dc(x,y,t) can be
expanded in Fourier series:
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dc~x, y, t !5 (
kx , ky52`

`

exp~2 2 p i ky y!

3exp~2 2 p i kx x/ar ! dckx , ky
~ t !,

~14!

dckx , ky
~ t !5E

0

1

dy exp~2 p i ky y!
1

ar
E

0

ar
dx

3exp~2 p i kx x/ar ! dc~x, y, t !.

Equation~13! can then be transformed to

]dckx , ky

]t
524 p2 R21 ~ k̃x

21ky
2!dckx , ky

1p k̃x@dckx , ky112dckx , ky21#

12p
k̃x ky

k̃x
21ky

2 @dckx , ky111dckx , ky21#,

~15!
where we have set

k̃x5kx /ar . ~16!

In its general form, the analysis of this equation proves
be quite difficult@21#. On the other hand, ifcst is stable, then
in the long time limit the evolution of the system will b
mainly governed by long wavelength modes. According
we start our analysis by considering only the modesky50,
61, i.e., we assume thatdc(kx ,kyt)'0 for ukyu>2 @22#.
Defining the vector dckx

[(dckx,0 ,dckx,1 ,dckx ,21), Eq.
~15! can be written in the following matrix form:

]dckx
~ t !

]t
5A•dckx

~ t !, ~17!

with
A5S 24 p2 R21 k̃x
2 p k̃x 2p k̃x

p k̃x ~12 k̃x
2!/~11 k̃x

2! 24p2 R21~11 k̃x
2! 0

2p k̃x ~12 k̃x
2!/~11 k̃x

2! 0 24p2 R21~11 k̃x
2!

D . ~18!
lds
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We first note that the matrixA is diagonal forkx50 so
that the solution of Eq.~17! simply reduces to

dc0, 1~ t !;dc0,21~ t !;exp~24p2R21 t !. ~19!

Furthermore, by definition of the stream function Eq.~9!,
c0, 0(t)50,;t. We thus concentrate on the casekxÞ0, look-
ing for a similarity transformationT•A•T21 that diagonal-
izes the matrixA. After some algebra, one finds

T5S ~l12l3!/p k̃x 1 21

~l22l3!/p k̃x 1 21

0 1 1
D , ~20!

where$l i% are the eigenvalues ofA:

l1522 p2 R21 ~112 k̃x
2!

1p A2 k̃x
2 ~12 k̃x

2!/~11 k̃x
2!14 p2 R22,

~21!

l2522 p2 R21 ~112 k̃x
2!

2p A2 k̃x
2 ~12 k̃x

2!/~11 k̃x
2!14 p2 R22,

l3524 p2 R21 ~11 k̃x
2!.

Equation~17! then becomes
]df i~ t !

]t
5l i df i~ t !, i 51,2,3, ~22!

where

df5T•dc. ~23!

It follows from Eq. ~21! that l2 andl3 are always nega-
tive, whereas there exists a critical value of the Reyno
number

Rc~kx!52 A2 p
1 1 k̃x

2

A12 k̃x
2

, 0, k̃x
2,1, ~24!

for which l1 vanishes, thus indicating the limit of stability o
the corresponding mode@23#. Clearly Rc is an increasing
function of ukxu, so that the first modes to become unsta
correspond toukxu51, provided the aspect ratioar.1. As
ar→1, Rc→`, indicating that no instability can develop fo
perturbations of the same spatial periodicity as the app
force @24#. In the following, we shall therefore concentra
mainly on the casear.1.

For ar52, relation~24! predicts a critical Reynolds num
ber of Rc'12.8255. Analytical calculations can still b
handled when the modesky562 are taken into account a
well, and lead to
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Rc
(5)~kx!5Rc~kx! F11

k̃x
4 ~ k̃x

213!

2 ~ k̃x
214!2 ~ k̃x

221!
G21/2

, 0, k̃x
2,1.

~25!

For ar52, one finds a critical Reynolds number ofRc
(5)

'12.8738, so that the discrepancy remains below 0.4%.
merical evaluation ofRc performed with a total of 103
modes shows no further significant discrepancy. We t
conclude that one can rely reasonably well on a three-m
approximation theory@that is,dckx , ky

(t)'0 for ukyu >2]. It
remains to check whether this approximation leads to
correct velocity field beyond the instability. To this end w
need to work out the explicit form of the stream function

The calculations are tedious and quite lengthy, so t
here we report only the basic steps. We start with the
nonlinear evolution equation fordc5c2cst :

]~¹2dc!

]t
52sin~2 p y!

]~¹2dc!

]x
24 p2 sin~2 p y!

]dc

]x

1R21 ¹2~¹2dc! 2
]dc

]y

]~¹2dc!

]x

1
]dc

]x

]~¹2dc!

]y
. ~26!

As for the linear case, we take the Fourier transform of t
equation, limiting ourselves to the first three modesky50,
61. Applying then the transformationT to the resulting
equation@cf. Eq. ~23!#, one obtains

]df i~ t !

]t
5l i df i~ t !1F i , i 51,2,3, ~27!

where the F i ’s are nonlinear polynomial functions o
df1 , df2, anddf3 and their complex-conjugates. Close
the bifurcation point (R'Rc , kx51), the modedf1 exhib-
its acritical slowing downsincel1(kx51)'0. On this slow
time scale, i.e.,t'O(l1

21), the fast modesdf2 anddf3 can
be considered as stationary, their time dependence ar
mainly throughdf1(t). Setting]df2 /]t']df3 /]t'0, one
can express the fast modesdf2 anddf3 in terms of the slow
mode df1 and its complex conjugate,df1* . If now one
inserts the expressions thus obtained for the fast modes
the evolution equation of the slow mode, one obtains
closed nonlinear equation for the latter~adiabatic elimina-
tion @25,26#!. In practice, however, such a calculation is po
sible only close to the bifurcation point, where the amplitu
of df1 is supposed to approach zero asR→Rc . In fact, there
exist other types of transitions, such as the one arising in
Vanderpol equation, where the amplitude of the solut
above the instability does not vanish as one approaches
critical point@27#. Detailed analysis shows that this is not t
case here~i.e., udf1u→0 as R→Rc), so that we can limit
ourselves to lowest orders inudf1u, obtaining finally the so-
callednormal formor amplitude equationfor the slow mode:

]df1~ t !

]t
5l df1~ t !2g udf1~ t !u2 df1~ t !

3@11O„udf1~ t !u2…#, ~28!
u-
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l[l1~kx51!

5
4p2

R

ar
211

ar
2~ar

212!
S 12

Rc
2

R2D 1O~ uR/Rc21u2! ~29!

andg is a positive constant whose expression, to domin
order in uR/Rc 2 1u, is given by

g58 A2 p3
~ar

6117ar
4116ar

2232! ~ar
211!2

ar
3 ~ar

221!3/2~ar
212!3 ~ar

214!2
. ~30!

Above the bifurcation pointR.Rc (l.0), the amplitude
equation~28! admits two stable stationary solutions, corr
sponding to the rotation sense of the streamlines in the fl

df1
656Al

g
exp~ i u0!, ~31!

whereu0 is a constant whose value depends on the ini
conditions. The fact that the stationary solution still depen
on the initial conditions simply reflects the Galilean inva
ance in thex direction that results from the periodic boun
ary conditions imposed on the system. Using relation~31!,
one can compute the explicit form of the fast modes forkx
50,61,62. Applying the inverse transformT21(kx) @cf.
Eq. ~20!#, to the vectordf6(kx)5(df1

6 ,df2
6 ,df3

6) ob-
tained and taking its inverse Fourier transform, one gets
explicit expression of the stream function in real space. Up
orderO(R/Rc21), one obtains

cst
6~x, y!52

1

2 p
cos~2 p y!6

Rc ar

2 p ~ar
212!

udf1u

3Fcos~2px/ar2u0!2
4 p

ar Rc
sin~2px/ar

2u0!sin~2py!G1
Rc

2

2 p ~ar
212!2

udf1u2

3F12
ar

4

~ar
214!2

cos~4px/ar22u0!Gcos~2py!,

~32!

where we have setudf1u[udf1
6u. Using the relations~9!,

the velocity profiles can now be obtained straightforward

ust
6~x, y!5sin~2py!7

4 p

~ar
212!

udf1u sin~2px/ar2u0!

3cos~2py!2
Rc

2

~ar
212!2

udf1u2 F12
ar

4

~ar
214!2

3cos~4px/ar22u0!Gsin~2py!, ~33!
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vst
6~x, y!56

Rc

~ar
212!

udf1u Fsin~2px/ar2u0!

1
4 p

ar Rc
cos~2px/ar2u0!sin~2py!G

2
2 Rc

2 ar
3

~ar
212!2 ~ar

214!2
udf1u2

3sin~4px/ar22u0!cos~2py!. ~34!

A density plot of the stream function~32! is represented in
Fig. 1 for R515, ar52, andu050, where, for the sake o
clarity, a vector plot of the velocity field is also included. W
note that the flow has an ABC-like topology@28#, with
closed streamlines~eddies!, open ones, and separatrices b
tween them.

We recall that the above results rest on the three-m
approximation theory. To check the validity of this bas
assumption, we have solved numerically the incompress
nonlinear hydrodynamic equations forar52, using standard
techniques@29#. Figure 2 compares contour plots of th
stream function obtained numerically with its correspond
theoretical counterpart Eq.~32! for R515. Given the rela-
tively large distance from the critical point (R/Rc21
'17%), the agreement is much better than expected,
discrepancy remaining below 5%. Surprisingly, the agr
ment does not improve as we consider smaller values of

FIG. 1. Density plot of the stream function Eq.~32! for R
515, ar52, andu050. For the sake of clarity, a vector plot of th
velocity field is also included.

FIG. 2. Stationary state contour plot of the stream function
R515, ar52, andu050. The full and dashed lines correspond
theoretical prediction@Eq. ~32!# and numerical results, respectivel
The discrepancy remains below 5%.
-

e

le

g

he
-
e

Reynolds number@30#. This is shown in Fig. 3, where both
the numerical and the theoretical horizontal profiles of
stream function with a fixed value of the vertical coordina
y53/4 are depicted for the Reynolds numberR513. The
discrepancy now exceeds 10%.

To understand the origin of this unexpected behavior,
note that the value of the critical Reynolds number that
have used to evaluate the stream function@Eq. ~32!# is based
on the three-mode approximation theory@cf. Eq. ~24!#. As
shown before, the accuracy of the latter value ofRc is about
0.4%, which is fine as long as the distance from the criti
point (R/Rc21) remains much larger than 0.4%. Now, fo
R513, the distance from the critical point is about 1%
which is of the same order as the accuracy ofRc and ex-
plains the relatively important discrepancy we observe
Fig. 3.

To overcome this difficulty, one has to compute a mo
accurate value of the critical Reynolds number, based,
instance, on the five-mode approximation theory@cf. Eq.
~25!#. As is well known@26#, this correction concerns only
the value ofRc , and in no way compromises the validity o
the amplitude equation~28! and its corresponding solutio
Eq. ~32!. This is illustrated in Fig. 3, where excellent agre
ment with the numerical result is demonstrated, whenever
useRc

(5) as the critical Reynolds number. For smaller valu
of R, one can compute the value ofRc numerically with the
desired precision and use it as an input to the amplit
equation~28!.

So far, we have limited ourselves to the analysis of
deterministic equations only, i.e., we have discarded
noise terms. In principle, there is no difficulty in taking in
account the noise contributions as well, except that the
plitudes of the field variables (df1 ,df2 ,df3) are now di-
rectly related to the amplitudeB of the noise, which is typi-
cally a small parameter. For example, the fast variab
(df2 ,df3)'O(B 1/2), whereas the slow variabledf1
'O(B 1/4) ~a detailed discussion of this problem is given
@31#!. Keeping this restriction in mind, one can repeat all t
above calculations in the presence of noise terms. To
dominant order inudf1u, one finds

]df1~ t !

]t
5l df1~ t !2g udf1~ t !u2 df1~ t !1j~ t !,

r

FIG. 3. Horizontal profile of the stationary state stream functio
with y53/4, as a function of the coordinatex for R513, ar52, and
u050. The full and dashed lines represent theoretical predicti
obtained by using an estimation of the critical Reynolds num
based on five-mode@Eq. 25!# and three-mode@Eq. 24!# approxima-
tion theories, respectively. The diamonds correspond to nume
results.
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]df1* ~ t !

]t
5l df1* ~ t !2g udf1~ t !u2 df1* ~ t !1j* ~ t !.

~35!

The function j(t) and its complex conjugatej* (t) are
Gaussian white noises with zero means and correlat
given by

^j~ t ! j~ t8!&50,
~36!

^j~ t ! j* ~ t8!&5B d~ t2t8!,

with

B5
4 kB T0 ar

2

M u0
2 R

@11O~ uR/Rc21u!#, ~37!

M being the total mass of the system:

M5arr0Ly
2 . ~38!

The results derived in this section were based explic
on the incompressibility assumption. However, as discus
in the Introduction, this assumption is inconsistent with t
very foundation of the fluctuating hydrodynamic formalism
On the other hand, we have presented in@1# numerical evi-
dence that in the vicinity of the bifurcation point the syste
behaves essentially as an incompressible fluid. We there
expect that the Langevin equation~35! should remain valid
for R close enough toRc . We shall clarify this major issue in
the next section.

III. FLUCTUATIONS IN THE COMPRESSIBLE FLOW

Let us now consider the compressible hydrodynam
equations~3!–~5!, for which we need to specify an equatio
of state. Since the system is isothermal, we simply set

p5cs
2 r, ~39!

wherecs is the isothermal speed of sound. As in the previo
section, we start with the linearized hydrodynamic equati
around the reference state$r0 ,vst%, wherevst is given by Eq.
~7!. Setting

r5r01dr,
~40!

v5vst1dv,

and scaling lengths byLy , time byLy /cs , dr by r0, anddv
by the speed of soundcs , the dimensionless linear fluctua
ing equations in Fourier space read~recall thatk̃x[kx /ar)

] drkx , ky
~ t !

]t
52 p i ~ k̃x dukx , ky

1ky dvkx , ky
!

1« R p k̃x ~drkx , ky112drkx , ky21!,

~41!
ns

y
d

e
.

re

c

s
s

]dukx , ky
~ t !

]t
52p « R~dvkx , ky111dvkx , ky21!

1p « R k̃x ~dukx , ky112dukx , ky21!

24 p2 «~ k̃x
21ky

2! dukx , ky

24 p2 a « k̃x~ k̃x dukx , ky
1ky dvkx , ky

!

12 p i k̃x drkx , ky
1Fkx , ky

~ t !, ~42!

]dvkx , ky
~ t !

]t
5p « R k̃x ~dvkx , ky112dvkx , ky21!

24 p2 «~ k̃x
21ky

2! dvkx , ky

24 p2 a « ky ~ k̃x dukx , ky
1ky dvkx , ky

!

12 p i ky drkx , ky
1Gkx , ky

~ t !, ~43!

whereR is the Reynolds number, defined in Eq.~11!,

«5
h

r0 cs Ly
, ~44!

and

a5z/h. ~45!

The functionsFkx , ky
andGkx , ky

are Fourier components o
the noise terms; their covariances follow directly from Eq
~5! and ~6!:

^Fkx , ky
~ t ! Fk

x8 , k
y8
~ t8!&58 p2 « A @~a11! k̃x

2

1 ky
2# dk1k8,0

Kr d~ t2t8!,

^Fkx , ky
~ t ! Gk

x8 , k
y8
~ t8!&58 p2 « A a k̃x ky dk1k8,0

Kr d~ t2t8!,

^Gkx , ky
~ t ! Gk

x8 , k
y8
~ t8!&58 p2 « A @ k̃x

21~a11! ky
2#

3dk1k8,0
Kr d~ t2t8!, ~46!

wherek[( k̃x , ky) and

A5
kB T0

M cs
2

, ~47!

M being the total mass of the system@cf. Eq. ~38!#.
For the sake of clarity, we first focus on thedeterministic

behavior, i.e., we discard for the moment the noise contri
tions from the evolution equations~41!–~43!. Furthermore,
we shall limit ourselves to the three-mode approximat
theory, i.e., we shall neglect the modes withukyu>2, for the
very same reasons that we have discussed for the inc
pressible case. With these assumptions, Eqs.~41!–~43! re-
duce to a system of nine coupled equations. It can then
checked that the change of variables
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drkx

6~ t !5drkx , 1~ t !6drkx ,21~ t !,

dukx

6~ t !5dukx , 1~ t !6dukx ,21~ t !, ~48!

dvkx

6~ t !5dvkx , 1~ t !6dvkx ,21~ t !

leads to a ‘‘partial diagonalization’’ of the evolution equ
tions, i.e., the equations for the variables$drkx ,0, drkx

2 ,

dukx ,0, dukx

2 , dvkx

1% decouple from the rest. Furthermor

their associated eigenvalues prove to remain strictly ne
ha
in

i
so
a

n
ha
s

a-

tive, regardless of the value of the Reynolds numberR, so
that they are not determinant for the onset of convect
instability. We therefore focus on the remaining four va
ables$drkx

1 ,dukx

1 ,dvkx

2 ,dvkx,0%. Defining the vectordhkx
(t)

[$drkx

1 , dukx

1 , dvkx

2 , dvkx,0% one readily finds

]

]t
dhkx

~ t !5C~kx!•dhkx
~ t !, ~49!

where the matrixC is given by
C~kx!5S 0 2p i k̃x 2p i 0

2p i k̃x 24p2«~11a k̃x
21 k̃x

2! 24p2«a k̃x 22p«R

2p i 24p2«a k̃x 24p2«~11a1 k̃x
2! 22p« k̃xR

0 0 p« k̃xR 24p2« k̃x
2

D . ~50!
f

y-
m-
s

ion

ob-

that

ion.
e

ex-
The analysis can be simplified somewhat by noticing t
the parameter« must remain small if one wishes to rema
within the limit of validity of the hydrodynamic regime@32#.
Furthermore, as already mentioned in the introduction,
this article we limit ourselves to strictly subsonic flows,
that we shall restrict the analysis to a parameter dom
where

«!1, «R5u0 /cs!1. ~51!

Accordingly, we evaluate the eigenvalues of the matrixC
perturbatively:

l̃~kx!5l̃ (0)~kx!1« l̃ (1)~kx!1 . . . . ~52!

After some algebra, one finds, up to orderO(«2),

l̃1~kx!5«@22 p2~112k̃x
2!

1p A4 p212 R2 kx̃
2 ~12 k̃x

2!/~11 k̃x
2!#,

l̃2~kx!5«@22 p2~112k̃x
2!

2p A4 p212 R2 kx̃
2 ~12 k̃x

2!/~11 k̃x
2!#, ~53!

l̃3~kx!52 p i A11 k̃x
222 p2~a 11! «~11 k̃x

2!,

l̃4~kx!522 p i A11 k̃x
222 p2~a11! «~11 k̃x

2!.

The eigenvaluesl̃1 and l̃2 correspond to dissipative~vis-
cous! modes, whilel̃3 and l̃4 are related to the propagatio
of ~damped! sound waves. It can then be easily checked t
the real parts ofl̃2 , l̃3, andl̃4 are always negative, wherea
there exists a critical value of the Reynolds number
t

n

in

t

Rc~kx!52 A2 p
11 k̃x

2

A12 k̃x
2

, 0, k̃x
2,1, ~54!

for which l̃1 vanishes, thus indicating the limit of stability o
the corresponding mode.

Remarkably, the above expression for the critical Re
nolds number is identical to the one obtained in the inco
pressible case@cf. Eq. ~24!#. In fact, detailed analysis show
that the relation~54! is exact, i.e., it is independent of«, at
least within the framework of the three-mode approximat
theory. On the other hand, if the modesky562 are taken
into account as well, tedious calculations lead to

Rc
(5)~kx!5Rc~kx! F11

k̃x
4 ~ k̃x

213!

2 ~ k̃x
214!2 ~ k̃x

221!
G21/2

1O„~u0 /cs!
2
…, 0, k̃x

2,1, ~55!

which is again equivalent to the corresponding result
tained for the incompressible case, Eq.~25!, the correction
being of the order ofO(«2). In particular, the first mode to
become unstable corresponds toukxu51, providedar.1.

We note that the matrixC is singular forkx 5 0, i.e., one
of its eigenvalues vanishes. A close inspection shows
this zero eigenvalue corresponds to the modedv0,0, which is
identically zero because of linear momentum conservat
Accordingly, in what follows we shall concentrate on th
case kx Þ 0, looking for a similarity transformationS•C
•S21 that diagonalizes the matrixC. For consistency, here
again we perform the calculations perturbatively, i.e., we
pandS in powers of«:

S~kx!5S0~kx!1« S1~kx!1•••. ~56!
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Note that this method constitutes an alternative to the t
scale perturbation theory@33# that was generalized b
Schmitz and Cohen@15# in order to study the Be´nard insta-
bility in a compressible fluid.

Since the explicit form of the eigenvalues is known up
O(«2), we need to evaluateS ~and its inverseS21) only up
to the same order. Despite this simplification, the gene
expression forS is quite awkward and will not be presente
here. The rest of the calculations are quite straightforwa
but remain tedious and lengthy, so we give only a br
sketch of the basic steps@see the discussion below Eq.~27!#.

We start by taking the Fourier transform of the fluctuati
hydrodynamic equations~3!–~5!. Using the change of vari
ables~40! and~48!, we next derive the nonlinear fluctuatin
equations fordhkx

. We then apply the transformationS to the
latter, obtaining a set of four nonlinear equations for t
variables $df̃1 ,df̃2,df̃3,df̃4%[df̃(t)5S•dhkx

. Close to

the bifurcation point (R'Rc , kx51), the modedf̃1 exhib-
its a critical slowing down, since by constructionl̃1'0. We
can therefore proceed to an adiabatic elimination of the
modes$df̃2,df̃3,df̃4%, limiting ourselves to dominant or
ders in udf̃1u @see the paragraph preceding Eq.~35!#. The
final result is a set of two coupled Langevin equations for
slow modedf̃1 and its complex conjugatedf̃1* :

]df̃1~ t !

]t
5l̃ df̃1~ t !2g̃ udf̃1~ t !u2 df̃1~ t !1 j̃~ t !,

~57!
]df̃1* ~ t !

]t
5 l̃df̃1* ~ t !2g̃ udf̃1~ t !u2 df̃1* ~ t !1 j̃* ~ t !,

with

l̃5l̃1~kx51!5l
u0

cs
@11O~u0

2/cs
2!#

'4p2«
ar

211

ar
2~ar

212!
S 12

Rc
2

R2D ~58!

and

g̃5g
cs

u0
@11O~u0

2/cs
2! #'

g

« R
, ~59!

wherel andg are given by Eqs.~29! and~30!, respectively.
The function j̃(t) and its complex conjugatej̃* (t) are
Gaussian white noises with zero means and correlat
given by

^j̃~ t ! j̃~ t8!&50,
~60!

^j̃~ t ! j̃* ~ t8!&5B̃ d~ t2t8!,

with

B̃5S u0

cs
D 3

B @11O~u0
2/cs

2!#'4 « ar
2 A, ~61!
e

al

d,
f

e

st

e

ns

whereB andA are given by Eqs.~37! and~47!, respectively.
Although the form of the Langevin equations~57! is the

same as that obtained for the incompressible case, Eqs.~35!,
they are nevertheless not equivalent since their coefficie
are clearly different, even to dominant order in«. The main
reason for this apparent discrepancy is related to the fact
for the incompressible case, the analysis has been carried
by scaling the velocities byu0, whereas for the compressibl
case we used a different scaling, i.e., we scaled the veloc
by the velocity of soundcs . If now we switch back to the
former scaling, i.e., we perform the change of variablet
→tcs /u0 , $u,v%→u0 /cs$u,v%, then Eqs.~57! lead to

df̃1~ t !5
u0

cs
df1~ t !@11O~u0

2/cs
2! #. ~62!

Remarkably, this result shows that, to dominant order in«,
the evolution of fluctuating compressible and incompress
hydrodynamic equations is governed by the very same s
mode, at least for values of Reynolds number close to
critical value.

Let us first consider the macroscopic behavior. Using E
~58!, ~59!, and ~62!, one can go backward step by step a
derive as well the evolution equations of the hydrodynam
velocities near the instability threshold. It can then be ea
checked that, to dominant order in«, the compressible sta
tionary velocity profiles are given by their incompressib
expressions, Eqs.~33! and ~34!. To check this important re-
sult, we have solved numerically the full nonlinear com
pressible hydrodynamic equations and compared the re
with analytical expressions obtained for the incompress
case. A typical result is shown in Fig. 4, whereust(x,y
51/4) as a function ofvst(x,y51/4) is depicted forR
515, «51022, andar52. Given the relatively large value
of the Reynolds number (R/Rc21'17%) and«, the agree-
ment is very good, the discrepancy remaining below 5%

We now concentrate on the behavior of fluctuations,
described by the Langevin equations~57!. The associated
Fokker-Planck equation reads

FIG. 4. Horizontal versus vertical components of the station
state velocity field withy51/4. The full line corresponds to theo
retical predictions, as given by Eqs.~33! and ~34!, whereas the
dashed line is obtained by solving numerically the compress
nonlinear hydrodynamic equations. The parameters areR515, ar

52, u050, and«51022. The discrepancy is about 5%.
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]P~df̃1 ,df̃1* ,t !

]t

5
]

]~df̃1!
F2~ l̃ df̃12g̃df̃1

2 df̃1* ! P1
B̃
2

]P

]~df̃1* !
G

1
]

]~df̃1* !
F2~ l̃ df̃1* 2g̃df̃1 df̃1*

2! P1
B̃
2

]P

]~df̃1!
G .

~63!

At the stationary state, one finds

Pst~df̃1 ,df̃1* !5N 21 expF 2

B̃ S l̃udf̃1u2 2
g̃

2
udf̃1u4D G

~64!

with

N5
1

4
Ap B̃/g̃ exp~ l̃2/ g̃B̃! erfc~2l̃/Ag̃ B̃!, ~65!

where erfc(•••) stands for the complementary error fun
tion. Thanks to this result, one readily gets

^udf̃1u2&5
1

g̃
~ l̃1B̃/4N!. ~66!

Away from the bifurcation point (l̃!0) the quartic term
in Eq. ~64! is negligible so that the distribution is Gaussi
and

^udf̃1u2&
G
'

A R2 ar
4 ~ar

212!

2 p2~Rc
22R2!~ar

211!
. ~67!

The fluctuations thus behave asudf̃1u'O(A 1/2). Recall that
the parameterA is inversely proportional to the system
total number of particles so thatA!1 @cf. Eq. ~47!#. As one
approaches the bifurcation point, the Gaussian characte
the distribution is gradually lost. Right at the bifurcatio
point l̃50, one has

^udf̃1u2&l̃5052 « ar S Rc A
g p D 1/2

, ~68!

which shows that the fluctuations now behave asudf̃1u
'O(A 1/4). The enhancement of fluctuations and the cha
of the probability law at the bifurcation point are a dire
manifestation of spatial symmetry breaking associated w
the emergence of convective patterns.

On the other hand, the fast modes$df̃2,df̃3,df̃4% prove
to remain Gaussian, regardless of the value of the Reyn
number. Detailed analysis shows that their contribution
nonequilibrium statistical properties of the fluid remain
the order ofO(u0

2/cs
2). In other words, the fluctuation spec

trum of hydrodynamic variables is mainly determined by t
statistical properties ofdf̃1. For instance, the static velocit
autocorrelation function is found to obey
of

e

h

ds
o

^dvk•dv2k&22A5
p2~ar

211!

ar
2 ~ar

212!2
^udf̃1u2&

3@11O„~u0 /cs!
2
…#, ~69!

where the second term on the left hand side is the equ
rium contribution and̂ udf̃1u2& is given by Eq.~66!.

It is instructive to study the Gaussian limitR!Rc , where
the linearized Langevin equations, Eqs.~41!–~43!, remain
valid. As was shown in@1#, they lead to the following ex-
pression for the static velocity autocorrelation function:

^dvk•dv2k&G
22A5

A R2 ar
2

2~Rc
22R2!~ar

212!
. ~70!

Now, inserting into Eq.~69! the Gaussian form of̂udf̃1u2&,
as given by Eq.~67!, leads precisely to the very same resu
We thus conclude that our general expression Eq.~69! re-
mains valid in the Gaussian regimeR!Rc , despite the fact
that it was derived in the close vicinity of the bifurcatio
point R'Rc .

To check the validity of our theoretical results, we ha
simulated the nonlinear fluctuating hydrodynamic equatio
~3!–~5! for different values ofR, settingar52, «51022, and
A51023/256'3.931026. The estimated statistical error
remain below 5% forR<10, but grow rapidly as we con
sider higher values ofR, reaching about 13% forR'Rc .
Above the bifurcation point,R.Rc , the stationary distribu-

tion has two maxima, located atdf̃156Al̃/g̃, which cor-
respond~up to a phase factor! to the deterministic stationary
solutions of the amplitude equation~31!. Because of the
presence of noise terms, the system visits these states
rather random fashion, resulting in a huge dispersion of d
This is especially true forR close toRc , which is precisely
the situation where our theoretical predictions are expec
to be applicable. Under this circumstance, obtaining relia
statistics requires prohibitively large computing times,
that we have been forced to limit the numerical simulatio
to values of Reynolds numbersR<Rc .

The results are presented in Fig. 5, together with both
complete and the linearized solutions, Eqs.~69! and ~70!,
respectively. The linear theory~Gaussian limit! shows quan-
titative agreement for values ofR/Rc up to about 86%, but
significant discrepancies start to show up asR→Rc , where
the theory leads to a diverging correlation function@cf. Eq.
~70!#. This is not the case for the complete solution Eq.~69!,
which exhibits perfect quantitative agreement forR/Rc up to
95%. A relatively small discrepancy of about 8% is o
served, however, for higher values ofR. Although this dis-
crepancy remains within the limit of the estimated statisti
errors, its systematic aspect nevertheless requires some
fications. In this respect, it is important to recall that t
results derived in this section were valid up toO(u0

2/cs
2).

Now, by definitionu0 /cs5R« @cf. Eq. ~51!#, and, since we
have set«51022, Rc«'0.13 at the bifurcation point. This
relatively large value ofRc« might well be at the origin of
the observed discrepancy. To check the validity of this ar
ment, it is tempting to perform the simulations all over aga
for a smaller value of«. However, since the relaxation tim
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of hydrodynamic modes grows as«21, reaching the same
degree of statistical accuracy as for the previous cases
quires much longer running times. For this reason we
cided to perform only one more simulation right at the cr
cal pointR5Rc , setting«51023. The theoretical prediction
for the nonequilibrium part of the velocity correlation fun
tion is 2.3131026. The simulation leads to 2.2431026 with
an estimated statistical error of about 15%. The discrepa
is now about 3%, much better than for the case«51022.

IV. CONCLUDING REMARKS

Recently, we studied the statistical properties of lineariz
Kolmogorov flow, from near equilibrium up to the vicinit
of the first instability leading to the formation of vortices@1#.
In particular, we established that the incompressibility
sumption leads to a wrong form of the static correlati
functions, except near the instability threshold where
merical results suggest that the incompressibility assump
should remain valid. The clarification of this important iss
requires a nonlinear analysis of fluctuating Kolmogor
flow. This is precisely the main purpose of the present
ticle.

We first considered the case of an incompressible flu
After identifying the slow modes governing the evolution

FIG. 5. Fourier transform of the nonequilibrium part of the sta
velocity autocorrelation function, normalized by the correspond
equilibrium part, as a function ofR/Rc . The solid and dashed
curves represent the complete and linearized solutions, Eqs.~69!
and~70!, respectively, whereas the diamonds correspond to num
cal results obtained by the simulation of nonlinear compress
fluctuating hydrodynamic equations. The parameters arear52, «
51022, andA51023/256. The estimated statistical error is abo
13% for the last data point.
s

s

re-
-

cy

d
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-
n

r-
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the system in the vicinity of the instability threshold, w
performed an adiabatic elimination of the fast modes to
tain a set of two nonlinear Langevin equations for the sl
modes. We then succeeded in deriving the explicit form
the stationary stream function, as well as the correspond
velocity profiles, in real space. Numerical studies of the n
linear hydrodynamical equations allowed us to confirm o
theoretical predictions.

We next considered the case of compressible Kolmogo
flow. The analysis can be simplified somewhat by notici
that the evolution of a compressible fluid is generally ch
acterized by two different time scales: a slow one, related
the dissipative viscous modes, and a fast one, expressing
propagation of~damped! sound modes. The ratio of thes
time scales, denoted by« @cf. Eq. 44!#, can be considered a
a small parameter, since otherwise the very validity of
hydrodynamics can no longer be guaranteed@32#. We thus
have at our disposal a natural small parameter that can
used to set up a perturbative technique. As already m
tioned, this method constitutes an alternative to the ti
scale perturbation theory that was generalized by Schm
and Cohen in order to study the Be´nard instability in a com-
pressible fluid@15,33#.

Using this perturbation technique, we first showed that
macroscopic behavior of the fluid is not affected, up
O(u0

2/cs
2), by the compressibility, in agreement with the i

tuitive arguments presented in the Introduction. We then s
ceeded in establishing that, close to the instability thresh
the stochastic dynamics of the system is governed by
coupled nonlinear Langevin equations in Fourier space.
solution of these equations can be cast into the expone
of a Landau-Ginzburg functional which, to dominant order
«, proves to be identical to the one obtained for the case
the incompressible fluid. The theoretical predictions we
confirmed by numerical simulations of the nonlinear fluc
ating hydrodynamic equations.

ACKNOWLEDGMENTS

We are very grateful to Professor E. G. D. Cohen, Prof
sor G. Nicolis, Professor J. W. Turner, and Professor C. V
den Broeck for helpful comments. This work was suppor
by the Belgian Federal Office for Scientific, Technical a
Cultural Affairs within the framework of the ‘‘Poˆles
d’attractions interuniversitaires’’ program, and by a Eur
pean Commission DG 12 Grant No. PSS*1045.

g

ri-
le
.

ys.
@1# I. Bena, M. Malek Mansour, and F. Baras, Phys. Rev. E59,
5503 ~1999!.

@2# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,
Oxford, 1984!.

@3# T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phy
Rev. Lett.42, 862 ~1979!; 44, 472 ~1980!; Phys. Rev. A26,
995 ~1982!.

@4# J. Dufty, in Spectral Line Shapes, edited by P. Wende~De
Kruger, Berlin, 1981!; J. Lutsko and J. Dufty, Phys. Rev. A32,
1229 ~1985!.

@5# I. Procaccia, D. Ronis, and I. Oppenheim, Phys. Rev. Lett.42,
287 ~1979!; D. Ronis, I. Procaccia, and I. Oppenheim, Phy
.

.

Rev. A 19, 1324 ~1979!; A. -M. Tremblay, M. Arai, and E.

Siggia, ibid. 23, 1451 ~1981!; D. Ronis, I. Procaccia, and I

Oppenheim,ibid. 26, 1812~1982!.
@6# G. Van der Zwan, D. Bedeaux, and P. Mazur, Physica A107,

491 ~1981!; R. Schmitz and E. G. D. Cohen, J. Stat. Phys.39,
285 ~1985!; 40, 431 ~1985!.

@7# J. Machta, I. Procaccia, and I. Oppenheim, Phys. Rev. Lett.42,

1368~1979!; J. Machta, I. Oppenheim, and I. Procaccia, Ph

Rev. A 22, 2809~1980!.
@8# R. Schmitz, Phys. Rep.171, 1 ~1988!.
@9# B. M. Law and J. V. Sengers, J. Stat. Phys.57, 531~1989!; B.



s

ti,

d

au-
l.

tat.

.

-

nd

tat.

A

a

6570 PRE 62I. BENA, F. BARAS, AND M. MALEK MANSOUR
M. Law, P. N. Segre´, R. W. Gammon, and J. V. Sengers, Phy
Rev. A 41, 816 ~1990!.

@10# M. Malek Mansour, A. L. Garcia, G. Lie, and E. Clemen
Phys. Rev. Lett.58, 874 ~1987!; M. Mareschal, M. Malek
Mansour, G. Sonino, and E. Kestemont, Phys. Rev. A45, 7180
~1992!.
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